First-principles study of LiPON and related solid electrolytes
نویسندگان
چکیده
Lithium phosphorus oxynitride materials have been investigated for many years, especially in relation to the thin-film electrolyte LiPON, developed at Oak Ridge National Laboratory. We have carried out first-principles simulations of related crystalline materials as a first step toward understanding the sources of stability and mechanisms of Li-ion conductivity in these materials. In addition to a comprehensive survey of known crystalline materials related to LiPON, we have also predicted some materials. For example, starting with crystalline LiPO3 which has twisted phosphate chains, we considered the possibility of modifying the structure by substituting N and Li for O. The optimized structures were computed to have regularized phosphate chains which form planar -P-N-P-Nbackbones. To the best of our knowledge, the predicted crystals, which we call s1-Li2PO2N with a 24-atom unit cell and s2-Li2PO2N with a 12-atom unit cell, have not yet been observed experimentally. We suggest several possible exothermic reaction pathways to synthesize these crystals.
منابع مشابه
First principles simulations of Li ion migration in materials related to LiPON electrolytes
In an effort to understand stability and ionic conduction mechanisms in the LiPON family of solid electrolytes, we have carried out first principles calculations of several related crystalline materials. Simulation results include heats of formation, zone center lattice vibrational modes, and activation energies for Li ion migration. In the course of this work, we discovered new stable crystall...
متن کاملComputer Modeling of Crystalline Electrolytes – Lithium Thiophosphates and Phosphates
During the last 5 years, lithium thiophosphate solid electrolyte materials have been developed[1, 2, 3, 4, 5] for use in all-solid-state rechargeable batteries. In particular, crystalline Li7P3S11 has been characterized as a superionic conducting material[2, 3, 4, 5] possessing room temperature conductivities as high as 10−3 S/cm, which is 1000 times greater than that of the commercial solid el...
متن کاملInterface Limited Lithium Transport in Solid-State Batteries.
Understanding the role of interfaces is important for improving the performance of all-solid-state lithium ion batteries. To study these interfaces, we present a novel approach for fabrication of electrochemically active nanobatteries using focused ion beams and their characterization by analytical electron microscopy. Morphological changes by scanning transmission electron microscopy imaging a...
متن کاملIn Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries.
Behaviors of functional interfaces are crucial factors in the performance and safety of energy storage and conversion devices. Indeed, solid electrode-solid electrolyte interfacial impedance is now considered the main limiting factor in all-solid-state batteries rather than low ionic conductivity of the solid electrolyte. Here, we present a new approach to conducting in situ scanning transmissi...
متن کاملFocused Ion Beam Fabrication of LiPON-based Solid-state Lithium-ion Nanobatteries for In Situ Testing.
Solid-state electrolytes are a promising replacement for current organic liquid electrolytes, enabling higher energy densities and improved safety of lithium-ion (Li-ion) batteries. However, a number of setbacks prevent their integration into commercial devices. The main limiting factor is due to nanoscale phenomena occurring at the electrode/electrolyte interfaces, ultimately leading to degrad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010